top of page
Search

Lunar Rover Vehicle Powered By Continuous Fiber Reinforced Composites


Image source: Anisoprint


The moon rover was tested at the simulated lunar environment of the LunaLab in the University of Luxembourg and exhibited last month on DemoDay. Kepler team that developed the rover is the winner of the “Configure test a DIY lunar rover” challenge at ActInSpace-Luxembourg hackathon 2020 edition. The team received support from experts of the Space Robotics Research Group from SnT and Technoport to explore the business concept and to build the lunar rover on the basis of a prototyped rover configurator.


The advantages of continuous fiber reinforced composites, flexible material choice, high durability and small weight, pave the way to a number of industrial uses where mass counts. Aerospace is one of such industries, as extra mass creates a lot of expenditure due to fuel consumption and many other factors. With the rover, the main challenge was to make a robot with a mass under four kilograms, and 3D printed composites was an ideal option, so the team turned to anisoprinting for light weight and high strength. The solution included remodeling two suspension parts — a wheel mount and control arm — for layering reinforcing fibers and ensuring strength and durability.


“Application cases we deal with primarily come from areas where isotropic materials proved ineffective, which means we always change the design for anisotropic reinforcement, both geometry and weight count here. Composite 3D printing has a large potential for aerospace, and we help people explore it and get maximum benefit from the technology” —explains Aleksey Ivanov, Anisoprint application engineer.

A new model in aura slicer. Image source: Anisoprint


There was chosen carbon fiber for reinforcement as the lightest option and SmoothPA for achieving a polished surface. The resulting weight of the parts is as small as 64 grams for the control arm and 24 grams for the wheel mount as there was used only 15% infill (see lattice structure below).

Composer A4 printing head and the part in progress. Image source: Anisoprint


Continuous fiber reinforced plastic parts can substitute metal ones in aerospace, engineering and many other areas along with cutting costs and increasing productivity.

Continuous Fiber Coextrusion (CFC), the technology that was developed and patented by Anisoprint, allows to create lattice structures, which is the key for multimaterial optimization and production. Such parts are lighter, stronger and cheaper than their metal analogs.


0 comments
bottom of page